bis-Nitrile and bis-Dialkylcyanamide Platinum(II) Complexes as Efficient Catalysts for Hydrosilylation Cross-Linking of Siloxane Polymers.
نویسندگان
چکیده
cis- and trans-Isomers of the platinum(II) nitrile complexes [PtCl2(NCR)2] (R = NMe2, N(C₅H10), Ph, CH2Ph) were examined as catalysts for hydrosilylation cross-linking of vinyl-terminated polydimethylsiloxane and trimethylsilyl-terminated poly(dimethylsiloxane-co-ethylhydrosiloxane) producing high quality silicone rubbers. Among the tested platinum species the cis-complexes are much more active catalysts than their trans-congeners and for all studied platinum complexes cis-[PtCl2(NCCH2Ph)2] exhibits the best catalytic activity (room temperature, c = 1.0 × 10(-4) mol/L, τpot-life 60 min, τcuring 6 h). Although cis-[PtCl₂(NCCH2Ph)2] is less active than the widely used Karstedt's catalyst, its application for the cross-linking can be performed not only at room temperature (c = 1.0 × 10(-4) mol/L), but also, more efficiently, at 80 °C (c = 1.0 × 10(-4)-1.0 × 10(-5) mol/L) and it prevents adherence of the formed silicone rubbers to equipment. The usage of the cis- and trans-[PtCl2(NCR)2] complexes as the hydrosilylation catalysts do not require any inhibitors and, moreover, the complexes and their mixtures with vinyl- and trimethylsilyl terminated polysiloxanes are shelf-stable in air. Tested catalysts do not form colloid platinum particles after the cross-linking.
منابع مشابه
Synthesis of some network polymers with siloxane units as a drug delivery system
New biodegradable network polymers containing siloxane-linked polymeric prodrugs of 5-ammino-2-hydroxybenzoic acid (5-ASA) in the main chain were prepared by ter polymerization of methacrylic acid (MA), 2-hydroxyethylmethacrylate (HEMA), and bis (trimethylsilyloxy) methylsilane (VBM) in the presence of some new cross-linking agents.The monomers and polymers were characterized by FT-IR and 1H-NM...
متن کاملDissymmetric dinuclear transition metal complexes as dual site catalysts for the polymerization of ethylene
A series of dissymmetric dinuclear complexes were synthesized, as dual site catalysts in ethylene polymerization, by coupling the allylated a-diimine complexes of the metals Ti, Zr, V, Ni and Pd with the ansa-zirconocene complex [C5H4-SiH(Me)-C5H4]ZrCl2 possessing a hydride silane moiety. The different stages of syntheses included the formation of bis(cyclopentadienide)methyl silane which was u...
متن کاملPlatinum complexes bearing a boron-based PBP pincer ligand: synthesis, structure, and application as a catalyst for hydrosilylation of 1-decene.
Four platinum(II) complexes bearing a boron-based PBP pincer ligand and chloride, hydride, triflate, and bis(trifluoromethanesulfonyl)imide were synthesized and structurally characterized. PBP-platinum chloride was proven to be an active catalyst for the hydrosilylation reaction using 1-decene and triethylsilane.
متن کاملPhthalimide-N-sulfonic acid and Isatin-N-sulfonic acid as highly efficient catalysts for the synthesis of bis-coumarins
Two highly efficient protocols for the production of bis-coumarins under solvent-free conditions have been introduced. The reaction of 4-hydroxycoumarin (2 eq.) with arylaldehydes (1 eq.) using phthalimide-N-sulfonic acid (PhtSA) or isatin-N-sulfonic acid (IsSA), as solid-acid catalysts, afforded the mentioned compounds with good to excellent yields in short times.Briefly, we have introduced tw...
متن کاملBis(Imino) Pyridyl Iron Complexes: the Effect of Polymerization Conditions on Activities and Thermal Behaviors of Polyethylene
Two late transition metal catalysts based on 2,6-bis(imino)pyridine iron(II) were synthesized by introducing methyl substitution (catalyst A) and t-Butyl substitution (catalyst B) at the ortho position of the aryl rings of the ligand. Comparative ethylene polymerizations using the catalysts showed quiet different behaviors. The activity of catalyst A was higher than that of catalyst B in all of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2016